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Random Field Characterization of a Mangrove 
Site with CPT Data 
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Abstract— Geotechnical site characterization requires the determination of site-specific field parameters which are known to exhibit 

pronounced variability. The study performed a probability-based characterization of mangrove site in onshore Niger Delta region of Nigeria 

relying on in-situ test data from the site investigation report, with the aim of understanding the nature of spatial variability of soil properties 

in the soil formations. The site characterization involves the application of random field theory in estimating the three key statistical 

quantities that fully describe spatial variability of a soil property (mean 𝜇, variance 𝜎2, and correlation structure 𝜃), using data from select 16 

CPT holes. The estimation of the correlation structure, which defines the distance over which the value of the soil property remains similar 

in the field, was performed by fitting correlation theoretical models to the experimental correlation functions in the vertical and horizontal 

directions. The vertical correlation lengths of cone tip resistance in the clay layers fall within the range 0.135-0.250m with the coefficient of 

variation (COV) decreasing as the depth of occurrence of the clay layer increases. The site is generally isotropic as the horizontal 

correlation lengths of the soil parameters did not show any directional dependency, being similar in all directions with the correlation length 

of the cone tip resistance in the eastings and northings ranging from 0.85 to a maximum of 3.18. This information is useful in deciding on 

the need for additional site investigation with closely spaced CP test holes and sampling depths. 

Index Terms—Coefficient of variation, correlation length, Random field theory, Site characterization, spatial variability.   

——————————      —————————— 

1 INTRODUCTION                                                                     

OIL formation is a continuous natural process and as a re-

sult its properties present spatial structure both vertically 

and horizontally, with a higher tendency for similar values at 

points close to each other than at points far apart [1], [2]. The 

conventional tool used in practice to account for spatial variabil-

ity is factor of safety in which a recommended value reflects the 

engineer’s confidence in the available data, and experience. 

More recent research efforts, however, apply the hypothesis of 

randomness in resolving issues of variability as characterization 

of spatial variability of soil properties is readily performed us-

ing statistical and probabilistic methods [3]. These methods 

have evolved from simple statistical description of the soil 

property to the more intricate random field theory. 

The study carried out a probability-based characterization 
of a mangrove swamp site in Niger Delta region of Nigeria 
using in-situ data from the site investigation report. The cone 
tip resistance data from select 16 CPT were analyzed and 
modeled using the random field theory culminating in the 
geotechnical characterization of the site   

2 RANDOM FIELD THEORY 

2.1 Spatial Variability of Soil Property 

The patterns of spatial variability in soil parameters might be 

discrete or continuous [4]. The soil property exhibits continuous 

spatial variability when it varies continually from one site to 

another throughout the soil unit and is characterized by a 

steady fluctuation around an average trend of variation. Dis-

crete spatial variability occurs in soil units that exhibit continu-

ous spatial variability but with a mixture of dislocations such as 

faults, lenses, or fills arising from their geological and morpho-

logical history. Notwithstanding the pattern of the spatial vari-

ability, the characterization of a site using the random field 

model assumes that every point in the field is a random variable 

and the soil properties are spatially dependent, with such de-

pendence decreasing as the separation distance of the points 

increases. 

A full characterization of spatial variability of a soil property 
requires the description of the soil property in terms of three 
statistical quantities of mean, variance, and scale of fluctuation 
or correlation length which gives an indication of the distances 
within which material property values exhibit a considerable 
correlation [5]. Every point in a random field is a realization and 
the statistical parameters describing the field are determined 
from only one realization making it imperative that the random 
field should locally satisfy certain ergodicity conditions [4]. One 
of such conditions is that of stationarity (or homogeneity) of 
data which allows the complete joint distribution to be quanti-
fied by the mean vector and covariance matrix and makes the 
distribution independent on spatial position but dependent on-
ly on relative positions of points. A random field of non-
stationary mean and variance can always be linearly trans-
formed into a weak stationary field using Equation (1) [6]. 

X’(t) = [X(t)-μ(t)]/σ(t)     (1) 
 

With transformation, the random field   will have a mean 

of zero and unit variance throughout the given domain. Gener-

ally, a transformation of the variables is often carried out by 
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decomposition which converts the non-stationary field to sta-

tionary or nearly stationary field, simplifying the application of 

the random field theory. The decomposition transformation 

technique breaks down the soil property into deterministic 

trend component and a set of residuals fluctuating about the 

trend. Considering a one-dimensional case in the depth (z) co-

ordinate, the decomposition can be expressed in form of an ad-

ditive equation [2], [8]:  

 

Ψ(z) = t(z)+ξ(z)      (2) 

The decomposition procedure is primarily aimed at obtaining 

an estimate and removing the deterministic component, t(z), 

while ensuring that the residual random component, ξ(z), re-

mains stationary. The residual component is then modeled by 

means of statistical analysis to fully characterize the spatial var-

iability of the soil parameter. The scale of fluctuation, θ, and the 

autocovariance function, C(τ) defines the spatial structure of the 

residual component, where τ is the distance between observa-

tion points [9]. 

Developing a model for the spatial variability of geotechnical 

material requires at least three statistical parameters: the mean, 

μ; a measure of variance, σ2 (standard deviation σ, or coefficient 

of variation); and a scale of fluctuation, θ, which links the corre-

lation of the geotechnical properties with distance [15]. A high 

value θ indicates that the property varies slowly with distance 

from the mean, indicating a more continuous deposit, whereas a 

low value indicates that the property fluctuates rapidly around 

the mean, indicating a more randomly variable material [10]. 

Two important statistical properties of the random field in 

modeling the spatial variability of the soil property are the au-

tocovariance, ck, and autocorrelation coefficient, ρk, at lag k. 

These two properties are usually estimated from the samples 

obtained from a population. The sample autocovariance ck* and 

the sample autocorrelation coefficient, at lag k, rk, are defined as 

follows [10]: 

 

                              (3) 

and  

 

    (4) 
 

 = average of the observations  

The plot or graph of  for lags  represents the sam-

ple autocovariance function (ACVF), or auto-variogram while 

the plot of  for lags  represents the sample auto-

correlation (ACF), where  is the maximum number of lags for 

calculations (e.g., ). Estimates for scale of fluctuation 

are usually obtained by fitting the theoretical correlation model 

(Table I) to the sample autocorrelation function [7], [9], and [11]. 

The correlation length is the lag number when  and this 

is defined by the Bartlett’s limit - Equation (5) [12], [13].  

 

   (5) 

 

  For two locations separated by horizontal and vertical distanc-

es Δh and Δz respectively, in a three-dimensional zero-mean 

random field ξ(x,y,z), the autocorrelation can be estimated with 

Equation (6), where ξ is the residual or detrended property field 

and (x,y,z) is the spatial location, with x and y being the hori-

zontal coordinates and z the depth coordinate [14]. 

  (6) 

where var(.) denotes variance: cov(..) denotes covariance, 
Δh=(Δx2+Δy2)0.5 is the horizontal separation distance.   

2.2 Scale of Fluctuation 

The scale of fluctuation, θ , is a measure of the distance within 

which points in a domain are significantly correlated and it 

conveniently describes the spatial variability of a soil property 

[15]. The correlation between two points depends on how the 

separation distance compares with θ. Given the importance of  

in the spatial variability description of soil property in a random 

field, extensive research work aimed at developing more ra-

tional approaches in determining accurate estimates of the scale 

of fluctuation have been carried out [16], [17], [18], [19]. Small 

values of  θ  obtained from any of the models indicate that the 

correlation function decays rapidly to zero with increasing τ 

(meaning that the correlation between the two points under 

consideration are rapidly smaller) resulting in a rougher ran-

dom field. As , all points within the domain become un-

correlated and the field becomes extremely rough. Conversely, 

increasing values of θ  is an indication that the property field is 

smoother meaning that the field is showing less variability con-

verging to a uniform field when  [20]. In practice, estima-

tion of θ  is done by fitting the theoretical correlation to the ex-

perimental correlation function [7], [9], [11]. 

 

Table I: Some common correlation models,      Source: [20] 

Correlation Model Expression Scale of 
Fluctuation 

Simple exponential ρ(τ) = exp[-|τ|/b] 2b 
Gaussian exponential ρ(τ) = exp{-π[|τ|/c]2} √πc 
Second-order auto-
regressive process 

ρ(τ) = exp-|τ|/d 
{1+(|τ|/d)} 

4d 

Cosine exponential ρ(τ) = exp-|τ|/ρcos(τ/α) α 
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3 METHODOLOGY 

3.1 Study Area and Data Acquisition  

The area of study falls within the Tertiary Niger Delta which 
occurs at the southern end of Nigeria bordering the Atlantic 
Ocean and extends from about longitudes 30-90E and latitude 
40 30’-50 20’N.  
The study used data from a geotechnical site investigation re-
port of a refinery project with a total of 96 data sets available, 
out of which 20 (16 CPT and 4 borehole data), were carefully 
selected for the study to present an equally spaced CPT grid, 
suited for random field theory application. A summary of the 
data set is presented in Table II 

 
Figure 1. Location of study area 

 

 
Table II. Study data set 

Data Refinery 

 
CPT 

CP 10 CP 14 CP 19 CP 24 
CP11 CP16 CP20 CP26 
CP12 CP17 CP22 CP27 
CP13 CP18 CP23 CP28 

Borehole BH8 BH9 BH10 BH11 

 

3.2 Method of Data Analysis     

The method of data analysis followed the same steps of an 
accompanying paper [23]. The soil profile generated from the 
borehole log and CPT data identified five distinct soil layers and 
analyses were performed for each of the soil layers. To ensure 
statistical homogeneity or stationarity within the domain for a 
seamless application of the random field theory, the entire soil 
profile within the zone of influence was divided into number of 
statistically homogeneous or stationary sections, and the data 
within each layer subjected separately to statistical analysis [21].  

Data from each CPT test hole was evaluated to determine 
the value of geotechnical parameter at the different strata of the 
soil profile. The examination of data of each CPT to determine 
the value of the realization at any strata was carried out using 
the following steps [10]: 

 Examine the data of the parameter across the depth and 
transform the non-stationary data into stationary data. 
Where the data exhibited a trend, decomposition was re-
quired otherwise linear transformation into a weak station-
ary field was performed. 

 Decomposition involved separating the trended data into a 
slowly changing trend component and a random or residual 
component. The ordinary least square (OLS) method was 
used to estimate the trend. 

 To ensure stationarity of the residuals, eyeballing and the 

Kendal’s test was used to examine for stationarity. With 
stationarity confirmed, it was assumed that the residuals are 
normally distributed. 

 Calculate the sample autocovariance and autocorrelation 
functions using Equations (3) and (4) respectively. 

 Estimate the correlation length, , by fitting a theoretical 
model from Table 1 to the plot of sample ACF over lag dis-
tance 

 Calculate the Bartletts distance (i.e., distance over which the 
samples are autocorrelated). 
The vertical spatial variability was analyzed by estimating 

the correlation distance within each soil layer for the cone tip 
resistance (Equation (4)) while the horizontal spatial variability 
was analyzed by fitting a theoretical model to the sample auto-
correlation function (ACF) of pairs of CP test holes (Equation 
(6)). Given the wide spacing between the CP test holes, three 
additional intermediary test holes were generated using data 
from pair of field CP profiles which effectively reduced the 
spacing between test holes from 50m to 12.5m. The 2-
dimensional spatial variability was estimated in two horizontal 
directions (northing and easting). 

4 RESULTS AND DISCUSSION 

4.1 Random Field Characterization – vertical spatial 
variability  

The random field modeling for vertical variability of qc is il-
lustrated using data from the CP26 test hole. The plot of  qc 
against depth from the CPT interpretation software is shown in 
Figure 2. Each stratum was examined for spatial trend and 
where trends existed it was removed using Ordinary Least 
Square (OLS) method. 

 The data exhibited both linear and quadratic trends. Figure 
3 shows a trend model with residual over the depth band 
shown in Figure 4. The clay soil layers followed a linear trend 
while the sand and gravelly layers followed a quadratic trend. 

For the strata lying within 12.5-25m depth, the residual,  is 
obtained by subtracting the trend value from the measured val-
ue as in equation (7). 

 

               (7) 

 

Results of the Kendall’s  test had all the soil layers  values 

within the range  and closer to 0 indicating stationarity of 
data. To estimate the correlation length, the autocorrelation 
functions (ACF) were computed for separation distances 

 for lags  where  (i.e., sam-

pling interval) and =number of data points within layer. The 
plot of sample ACF over the separation distances with the co-
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sine exponential theoretical model superimposed, for soil layer 
at 16.5-37.5m depth is shown in Figure 5. 
 

 

 
Figure 2: Cone tip resistance plot of CP26 

 
 
 
 
 

 
Figure 3: Measured cone tip resistance with quadratic trend 

for at 12.5-16.25m depth 
 
 
 
 

 
Figure 4: Residuals of qc, after trend removal at 12.5-25m 

depth 
 
      

 
Figure 5: Sample and model ACF from residual of  at 16.5-

37.5m depth 
 
Summary of results of vertical variability analyses of CP26 

test hole is presented in Table IV. Similar analyses were repeat-
ed on the data from each of the other 15 CP test holes and the 
estimated vertical scale of fluctuations are presented in Table V 
for the clay soil units and Table VI for the sand and gravelly soil 
units.  

 
Table IV: Summary of results of vertical variability analyses 

on CP26 test hole data 

Depth range 
of stratum (m) 

Value of 
Parameter 
(m) 

Bartlett’s 
distance 

Scale of Fluc-
tuation, θ(m) 

0.25-5.25 α=0.478  0.250 

6.25-12.25 α=0.105  0.135 

12.5-16.25 α=0.345  0.248 

16.5-37.5 α=0.182  0.176 

37.75-46.5 α=0.261  0.128 
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Table V: Vertical Scale of Fluctuation, , of cone tip re-

sistance,  in clay units 

Sensitive 
fines 

0.25 - 5.25m   

Clay  6.25 – 12.25m 16.5 – 37.5m 

Variable θV(m) θV(m) θV(m) 

CP10 0.246 0.162 0.186 
CP11 0.195 0.173 0.212 
CP12 0.184 0.168 0.179 

CP13 0.224 0.161 0.210 
CP14 0.246 0.165 0.202 
CP16 0.214 0.142 0.180 
CP17 0.238 0.158 0.204 
CP18 0.147 0.154 0.199 
CP19 0.210 0.145 0.201 
CP20 0.167 0.172 0.212 
CP22 0.247 0.174 0.216 
CP23 0.195 0.165 0.183 
CP24 0.246 0.175 0.188 
CP26 0.250 0.135 0.176 
CP27 0.135 0.188 0.216 
CP28 0.165 0.167 0.181 

Mean (m) 0.207 0.163 0.197 
Std Dev (m) 0.038 0.014 0.014 
COV (%) 18.6 8.4 7.4 

 
 
 
Table VI: Vertical Scale of Fluctuation of cone tip resistance 

in sand and gravelly units 

Sand 12.5 – 16.25m  

Gravely Sand   37.75 - 46.5m 

Variable θV(m) θV(m) 

CP10 0.265 0.182 

CP11 0.237 0.198 

CP12 0.321 0.180 

CP13 0.237 0.210 

CP14 0.246 0.200 

CP16 0.231 0.242 

CP17 0.322 0.183 
CP18 0.280 0.203 
CP19 0.280 0.225 
CP20 0.288 0.220 
CP22 0.313 0.250 
CP23 0.284 0.240 
CP24 0.249 0.254 
CP26 0.248 0.128 
CP27 0.135 0.125 
CP28 0.268 0.220 

Mean (m) 0.262 0.204 

Std Dev (m) 0.045 0.038 

COV (%) 17.2 18.8 

 
 

 

4.2 Random Field Characterization – horizontal spatial 
variability  

The determination of the correlation structure in the hori-
zontal direction is illustrated using the residuals of CPT data of 
CP 26 and CP27 for the easting and CP20 and CP26 for the 
northing. The sample correlation functions were determined for 
each layer in the soil profile. The plots of the sample ACF over 
the lag distance (at 1m intervals) are shown in Figures 6, 7, 8, 9 
and 10. Theoretical models were fitted to estimate the scale of 
fluctuation with the simple exponential model providing the 
closest fit to the sample ACF. Table VII provides a summary of 
the results. The summary of analyses carried out between other 
pairs of CPT hole across the study field in the easting and north-
ing directions are presented in Tables VIII and IX respectively.   

 
 

 
Figure 6: ACF of CP26 & CP27 @ 0 - 5.25m depth 

 
 
 

 

 
Figure 7: ACF of CP26 & CP27 @ 6.25 – 12.25m depth 
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Figure 8 ACF of CP26 & CP27 @ 12.25 - 16.00m depth 
 

 
Figure 9: ACF of CP26 & CP 27 @ 16.25 - 37.5m depth 
 

 
Figure 10: ACF of CP26 & CP27 @ 37.75 - 41.5m depth 
Table VII: Summary of results of horizontal variability anal-

yses 

Depth range 
of stratum 
(m) 

Value of Pa-
rameter (m) 

Bartlett’s 
Limit (m) 

Scale of Fluctua-

tion,  
(m) 

0.25-5.25 α=0.700 0.428 0.987 
6.25-12.25 α=0.500 0.392 1.200 

12.5-16.00 α=1.200 0.490 2.200 

16.25-37.5 α=0.900 0.216 1.800 

37.75-41.5 α=0.400 0.490 1.000 

 
 

Table VIII: Horizontal variability analyses of qc -Easting 

Avg. 
thickness 

0.25 - 
5.25m 

6.25 – 
12.25m 

12.5 – 
16.0m 

16.5 – 
37.5m 

37.75 – 
46.5m 

Varia-
ble 

θH(m) θH(m) θH(m) θH(m) θH(m) 

CP10 –11 2.000 1.900 2.300 2.800 0.900 

CP11 – 12 1.500 1.500 2.400 2.800 1.00 

CP12 –13 0.850 1.300 2.200 2.100 1.200 

CP14 –16 1.900 1.400 2.700 2.500 0.900 

CP16 –17 2.200 1.200 2.400 1.800 1.200 

CP17 – 18 2.000 1.400 2.600 1.900 1.200 

CP19 –20 1.500 2.100 2.500 2.700 1.100 

CP20 – 22 2.300 1.400 2.400 2.600 1.400 

CP22 –23 1.650 1.300 2.200 2.000 1.400 

CP24-26 2.400 1.700 1.800 2.300 1.000 

CP26 – 27 0.987 1.200 2.200 1.800 1.000 

CP27 –28 1.500 1.400 2.300 2.500 1.100 

Mean (m) 1.732 1.483 2.333 2.317 1.117 

Std Dev m) 0.492 0.279 0.230 0.383 0.170 

COV (%) 28.4 18.8 9.9 16.5 15.2 

 
 
Table IX: Horizontal variability analyses of qc - Northing 

Avg. thick-
ness  

0.25 - 
5.25m 

6.25 – 
12.25m 

2.5 – 
16.0m 

16.5 – 
37.5m 

37.75 – 
46.5m 

Variable θH(m) θH(m) θH(m) θH(m) θH(m) 

CP10 – 14 2.050 0.870 1.700 1.670 0.980 

CP11 – 16 1.920 1.130 1.570 1.280 1.020 

CP12 – 17 2.820 1.070 1.650 1.660 0.950 

CP13 – 18 3.180 0.850 1.850 1.475 1.050 

CP14 – 19 1.650 0.980 1.570 1.670 0.990 

CP16 – 20 3.010 1.100 2.120 1.525 1.010 

CP17 –22 2.520 1.150 1.560 1.650 0.950 

CP18 – 23 2.900 0.880 1.670 1.650 0.980 

CP19 – 24 2.100 1.010 2.260 1.550 0.960 

CP20-26 2.800 1.200 2.500 1.500 1.000 

CP22 –27 3.050 1.600 2.120 1.750 0.970 

CP23 –28 2.200 1.120 2.450 1.700 0.950 

Mean (m) 2.167 1.080 1.918 1.590 0.984 

Std Dev (m) 0.512 0.201 0.354 0.130 0.031 

COV (%) 20.4 18.6 18.4 8.2 3.2 
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The correlation lengths of the cone tip resistance exhibited 
similar characteristics in the vertical and horizontal directions 
within clay deposits with no marked behavioral pattern ob-
served in sand deposits. Within the clay units, the coefficient of 
variation of the correlation length of the geotechnical parameter 
decreased as depth increased (Table X, and XII), suggesting that 
variability in the clay soils depends on the location depth of the 
deposit. The deeper the deposit the less variable is the soil 
property, an indication of the stable state of the deposit at such 
depths which is largely attributed to the effect of in-situ confin-
ing stresses. With larger confining stress in soils, void ratio re-
duces over time resulting in consolidation of clay deposits 
hence the stable state and associated low coefficient of variation. 
The upper clay layers exhibited more variability than deep ly-
ing layers of the same soil group due to the increased void ratio. 
Conversely, the coefficient of variation in the sand deposits did 
not display consistent behavioral pattern as observed in clay (XI 
and XIII) with the trend varying from one orientation to the 
other. It increased with depth in easting and decreased with 
depth in the northing.   

The estimated scale of fluctuation defines the distance over 
which the soil parameter is correlated, implying that if the value 
of the parameter is large at a point, it is expected to remain large 
over the correlation distance. Beyond the distance defined by 
the Bartlett’s limit, the value of the parameter is expected to be 
different. Thus, the cone tip resistance in the upper clay deposit 
is correlated over a length of 0.135-0.250m in the vertical direc-
tion as shown in Table X. The minimum and maximum esti-
mated correlation lengths of the parameter in the soil groups 
encountered are shown in Tables X-XIII. Furthermore, the corre-
lation length or scale of fluctuation in the horizontal coordinates 
(easting and northing directions) are similar, an indication of an 
isotropic field.  

 
Table X: Variation of scale of fluctuation with depth in clay 

in the vertical direction 

Depth range 
(m) 

Vertical scale of fluctuation θV range (m) 

Cone tip resistance,  

min max COV% 

0.25-5.25 0.135 0.250 18.6 

6.25-12.25 0.135 0.188 8.4 

16.50-37.50 0.176 0.216 7.4 

 
Table XI: Variation of scale of fluctuation with depth in sand 

in the vertical direction 

Depth range (m) Vertical scale of fluctuation θV range (m) 

Cone tip resistance,  

min max COV% 

12.5-5.25 0.135 0.322 17.2 

37.75-46.50 0.125 0.254 18.8 

 

Table XII: Variation of scale of fluctuation of qc with depth 
in clay in the horizontal direction 

Depth 
range (m) 

Horizontal scale of fluctuation  range (m) 

Cone tip resistance,  
(Easting) 

Cone tip resistance,  
(Northing) 

min max COV% min max COV% 

0.25-5.25 0.850 2.400 28.4 1.650 3.180 20.4 

6.25-12.25 1.200 2.100 18.8 0.850 1.600 18.6 

16.50-37.50 1.800 2.800 16.5 1.280 1.750 8.2 

 
 

Table XIII: Variation of scale of fluctuation of   with depth 
in sand in the horizontal direction 

Depth 
range (m) 

Horizontal scale of fluctuation  range (m) 

Cone tip resistance,  
(Easting) 

Cone tip resistance,  
(Northing) 

min max COV% min max COV% 

12.5-16.00 1.800 2.700 9.9 1.560 2.500 18.4 

37.75-46.50 0.900 1.400 15.2 0.950 1.050 3.2 

 

5 CONCLUSIONS 

The generalized soil profile comprises of upper soft organic 
sensitive fines and alternating layers of clay and sand/gravely 
sand. The upper organic sensitive fines exhibit small correlation 
length for the cone tip resistance, ranging from 135mm to 
250mm, indicative of a rough field up to a depth of about 5m. 
This implies that the geotechnical properties on this layer are 
largely unpredictable and changes over extremely small dis-
tances. In practice, such soil is adjudged unsuitable to support a 
foundation and will be recommended for replacement or pre-
loading. 

The coefficient of variation of the correlation length of the soil 
parameter decreases as depth increases indicating that the soil 
properties are more predictable at deep lying strata, especially 
for clay soils. The upper lying clay soils exhibit more variability 
than the deeper lying clay units. This phenomenon is attributed 
to the effect of in-situ confining stresses on the soil layer which 
acts to reduce the void ratio and increase the consolidation of 
the clay units at such depths.   

The random field analyses show that the site is generally iso-
tropic as the correlation lengths of the soil parameters were sim-
ilar along different directions (eastings and northings). The cone 
tip resistance range of correlation length in the easting and 
northing directions are 0.85-2.8 and 0.85-3.18 respectively. With 
this information, it is possible to decide if additional site inves-
tigation with closely spaced CP test holes and sampling depths 
will be required. 
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